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ABSTRACT 

 

 A simulation of single epoch ambiguity resolution success rate under varying 

levels of pseudorange accuracy is conducted with a hypothetical, 12 satellite in view, 

GNSS configuration.  Scenarios were run with no atmospheric error (short baseline), with 

ionosphere error, and with ionosphere and troposphere error contributions (long 

baseline).  Additional calibrations and supporting model data were simulated by adding 

appropriate weights.  The long baseline scenarios were extremely sensitive to the 

inclusion of ionosphere model data, and were also aided by the inclusion of troposphere 

data.  When aided by such data, single epoch ambiguity resolution success rates of 95 to 

97% were obtained with a 10 to 20 cm pseudorange RMS. 

 

 

INTRODUCTION 

 

The capability of measuring GNSS carrier phase and computing positions with 

centimeter-level accuracy is well established.  However, the technology suffers in 

robustness due to the need to resolve the phase ambiguity in the computation process.  

For this reason, the successes of carrier phase positioning have been generally confined to 

static survey or short-baseline kinematic situations. 

 

We are currently at the threshold of several technical advances driven by GPS 

modernization and by the deployment of the Galileo satellite system.  In addition, certain 

instrumental and atmospheric propagation data sets, derived from GPS, are now being 

routinely generated.  These advances are expected to have a significant impact on the 

carrier phase positioning problem. 

 

A rich body of literature has been published which explores aspects of GPS 

modernization, Galileo deployment, and the application of propagation data to phase 

ambiguity resolution.  Just a few examples are [1-3].  When considering the factors of 

three frequencies, two deployed constellations, and inclusion of ionospheric propagation 

data, it has been found that the inclusion of ionospheric data has the greatest impact on 

ambiguity resolution success rate. 

 

One factor that has not received sufficient study in the literature is the influence of 

improved pseudorange accuracy on phase ambiguity resolution.  Most papers adopt a set 

value for pseudorange accuracy.  One exception is [4].  The authors consider 
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pseudorange accuracy in ambiguity resolution for the geometry-free case, where each 

satellite-receiver vector is treated independently.  This represents a rather stringent 

situation.  Geometry improvements from deployment of many satellites are not 

considered.  In addition, that study did not encompass the inclusion of atmospheric 

propagation data. 

 

The GPS pseudorange accuracy has improved over time.  Crews [5] reports that 

the GPS user range error steadily decreased from 4.6 m RMS in 1990 to 1.5 m RMS in 

2001.  This improvement continues with a report of broadcast User Range Error of 1.1 m 

RMS in 2004 [6].  Further, early Galileo test bed experiments show pseudorange 95% 

accuracy (utilizing GPS Block IIR) of 45 cm, and one sigma, signal-in-space (no orbit or 

clock error) performance of 7 cm [7]. 

 

Given the technological advances in satellite clocks, denser global tracking 

networks, improved orbit and clock estimation in the control segments, deployment of the 

new signal modulations, advances in “smart” antennae that suppress multipath, and the 

potential of software receivers, it is increasingly important to consider pseudorange 

accuracy in the solution of the ambiguity resolution problem. 

 

 

GENERAL METHODOLOGY 

 

 We setup a mathematical model which provides ambiguity resolution success 

rate, )( zzP =( , as a function of pseudorange accuracy, and when elaborated by a variety 

of other factors.  The pseudorange, R, and the scaled carrier phase, λφ=Φ , are 

measurements in units of meters.  Only a single epoch case is considered.  This provides 

a very conservative model, which is also robust against carrier phase cycle slips. 

 

 The satellite configuration is assumed to comprise 2 constellations (GPS and 

Galileo) that total 12 locally visible satellites.  Two stations in Ohio gather the simulated 

data; COLB, the base station, and SIDN, a rover station, are separated by 103 km.  The 

positions of the satellites are taken as the 8 that were actually visible shortly after 0 UTC 

on July 15, 2004.  The remaining 4 simulated satellite positions were derived from 4 

randomly selected GPS satellites that were not visible at the time.  The simulated 

positions were computed by retaining the satellite-receiver vector azimuth and distance, 

and then by changing the sign of the vertical angle relative to the local geodetic horizon.  

This provided a convenient method to construct a single epoch scenario for hypothetical 

deployments some years in the future. 

 

 Following Odijk [3], the L1 pseudorange model is 

 
l

j

l

j

l

j dtdtR −+= ρ         (1) 

 

where 

 l

jR  L1 pseudorange from satellite l to receiver j (meters) 
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 l

jρ  geometric range from satellite l to receiver j (meters) 

 jdt  lumped bias parameter for receiver j (meters) 

 ldt  lumped bias parameter for satellite l (meters) 

 

 The notation is that subscripts denote a receiver index and that superscripts denote 

a satellite index.  The index, i, denotes a single base receiver, j denotes a rover receiver, k 

denotes a single pivot satellite, and l denotes the 11 remaining non-pivot satellites.  The 

lumped parameters contain both instrument bias as well as clock errors.  Due to the rank 

defect noted in [3], these effects are combined.  The lumping is not sufficient to remove 

all rank defects.  So, a pivot satellite, k, is selected, and the bias term dt
k
 is omitted.  Even 

though clock error is the dominant part of the bias parameters, they are scaled into units 

of meters.  This gives the best conditioning of the linear system, and makes it easy to 

distinguish rank defects and weak geometries. 

 

 The pseudorange model yields a set of 4 equations expressing all possible 

combinations of base and rover receivers and pivot and non-pivot satellites,  
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i dtR += ρ  
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 The L1 model for scaled carrier phase follows a novel setup of Goad [8], 

 

 l

j

l

j

l

j M1λρ +=Φ         (3) 

 

where 

 1λ    L1 wavelength  (meters) 

 l

j

l

j

l

j NM φφ −+=  non-integer carrier ambiguity 

 

and where 

 l

jN  integer phase ambiguity between satellite l and receiver j 

 jφ  fractional phase offset at receiver j 

 lφ  fractional phase offset at satellite l 

 

The phase offsets express lumped parameters.  They contain instrumental effects 

(including initial oscillator settings) as well as clock error.  Rank defects prevent 

separation of these elements.  In the Goad model, the set of phase equations explicitly 

formulate double difference (DD) integer ambiguities, kl

ijN , between the base and rover 

receivers and the pivot and non-pivot satellites.  Thus,  
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where 
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j

kl

ij NNNNN +−−=   (integer) 

k

i

k

j

l

i

l

j

kl

ij MMMMN +−−=   (integer) 

 

 This setup allows retention of one-way (satellite-receiver) expressions while 

providing the capability to fix integer ambiguities.  The one-way measurements may be 

treated as independent and uncorrelated.  This avoids the need to handle the covariances 

generated by double differencing, while giving a rigorous solution. 

 

 Conceptually, a solution would be obtained by weighted least squares, 

 

 (A
 t
Q

-1
 A) x = A

 t
Q

-1
 y         (5) 

 

with n observations and u unknown parameters, where 

 

 A matrix of observation equation partial differentials (n x u) 

 Q covariance matrix of observations (n x n) 

 x vector of unknown parameters (u x 1) 

 y vector of observations (n x 1) 

 

The variance-covariance matrix of the unknowns is written, 

 

 Qx = (A
 t
Q

-1
 A)

-1        
(6) 

 

To avoid rank defects, partial derivatives of the geometric range are taken only for the 

rover coordinates.  The base receiver coordinates are considered known.  For the simple, 

L1-only, pseudorange and phase models (2) and (4), we have the unknown parameter set 

shown in Table 1. 

 

  Table 1 – Unknown Parameters, L1-only, Simple Model 

 Number of Unknowns   Type 

 (N--number of satellites) 

N-1   L1 integer DD carrier ambiguities 

3   rover receiver position (XYZ) 

2   pseudorange receiver lumped bias (base and rover)  

N-1     pseudorange satellite lumped bias, non-pivot 

1      L1 float ambiguity, pivot satellite to base 

1      L1 float ambiguity, pivot satellite to rover 

  N-1   float ambiguity, non-pivot satellites to base 
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The system (5) is notable in that a subset of unknowns, the DD ambiguities, 

should be integer.  The remaining unknowns will be real numbers.  This creates a mixed 

integer, least squares problem.  Teunessin [9] first described the LAMBDA method of 

solution of such a problem.  Readers may recall the papers [10] and [11]. 

 

 The system (5) is partitioned 
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where a denotes double difference ambiguities, b denotes remaining parameters, and 

where the ambiguity-float solution is marked by the “^” symbol.  Inspection of âQ  shows 

the float ambiguities are significantly correlated.  LAMBDA computes a Gauss integer 

transformation, Z, which decorrelates the covariance matrix, âQ , as much as possible 

under certain requirements.  Z must be computed such that transformed ambiguities, 

z=Z 
t
a, are integer, and that Z is regular.  Thus, the elements of Z 

t
 and Z 

-t
 must be 

integer, while det(Z 
t
) and det(Z 

-t
) are 1± .  This approximate decorrelation is generally 

very effective, and allows highly efficient methods of integer ambiguity, a
(

, 

identification. 

 

 The LAMBDA method has been the object of much research, and has a large 

suite of statistical tools and results.  Among them is a lower bound of the success rate of 

fixing all the ambiguities, a, to their correct integer values, a
(

.  This conservative statistic 

[3,12] is 
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where the cumulative error function is 
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and where the conditional variances 
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Iiz
D=σ          (10) 

 

are the diagonal elements of the decomposition 
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z

t

ˆQLDL =          (11) 

 

of the covariance matrix of the transformed float ambiguities 

 

 ZQZQ a

t

z ˆˆ =          (12) 

 

The success rate can be computed as a simulation, without any actual measurements, y.  

One, of course, requires the partial derivatives, A, for any model scenario.  It is also 

worthy to note that the LAMBDA method is completely general, and can be applied to 

any mixed integer, least squares problem. 

 

 

SHORT BASELINE SCENARIOS 

 

 These scenarios neglect ionosphere and troposphere model components.  Such 

models are appropriate for baselines on the order of a few kilometers.  In all cases, a one-

way carrier phase accuracy of 3 mm RMS is adopted.  The pseudorange RMS is allowed 

to vary from 5 mm to 1 m RMS.  Pseudorange uses the model (2) and the carrier phase 

uses (4).  The success rate (8) for fixing all 11 DD ambiguities is shown in Figure 1. 

 

 
 

Fig 1. – Success Rate, L1-only, No Differential Ionosphere Effects 
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 It is no surprise to see extremely high success rates, even with a 1 m RMS 

pseudorange.  Commercial RTK equipment is available today that allows ambiguity 

resolution and centimeter-level positioning over short baselines. 

 

 We now require the L2 equation.  It is realized that Galileo will not operate at L2 

(1227.60 MHz), but at a nearby frequency, E5b (1207.14 MHz) [13].  For the purposes of 

this simulation, it can be considered close enough.  For the L2 pseudoranges.  
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i dtdtDDR −+−+= ρ        (13) 
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j dtDDR +−+= ρ  
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l

j

l

j dtdtDDR −+−+= ρ  

 

where 

 D
k
, D

l
  satellite differential code bias (meters)  

 Di, Dj  receiver differential code bias (meters) 

 

 Equations (13) differ from (2) by the inclusion of differential code bias (DCB).  

DCB is the difference between the L2 and the L1 instrumental errors that were previously 

lumped in the dt terms.  DCB’s are routinely computed for satellites and ground stations 

by the Center for Orbit Determination in Europe (CODE) [14-15]. 

 

 The L2 carrier phase models are 

 
k

i

k

i

k

i M2λρ +=Φ  
l
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l
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l

i M2λρ +=Φ         (14) 
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j MMMN 2222 λλλλρ −+++=Φ  

 

The L2 M and N parameters are distinct from the L1 parameters.  As described earlier, 

the M’s contain fractional phase offsets that include instrumental effects.  Since the L2 M 

and N are distinct from the L1 M and N, there is no need to explicitly formulate 

differential carrier biases. 

 

 If (13) and (14) are added to the simulation, then a rank defect is encountered.  It 

was confirmed by computing a singular value decomposition of the system (5).  This 

weakness has the same characteristic as the one that forced the suppression of the dt
k
 

terms in (2).  Odijk [3] notes that as baselines grow shorter, and the satellite-receiver 

vectors become more parallel, such weaknesses will appear.  Although only one defect is 

present, 12 satellite DCB constraints are added with 30-day CODE estimation RMS 

weights.  The calibration of the satellite DCB’s was applied with a 3 mm (about 10 ps) 

RMS accuracy.  With the models (2,3,13,14), the success of fixing all 22 DD ambiguities 

is shown in Figure 2. 
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Fig 2. – Success Rate, L1/L2, No Differential Ionosphere Effects 

 

 Extremely high success rates are still obtained.  The success is not as high with 

the L1-only case.  The estimation of the additional DCB parameters, although weighted, 

mildly weakens the solution. 

 

 Next, L5 equations are written for range and phase,  
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where 
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 D5
k
, D5

l 
satellite L1/L5 differential code bias (meters)  

 D5i, D5j  receiver L1/L5 differential code bias (meters) 

 

 Equations (15) introduce new L5 DCB’s, analogous to the regular L2 DCB’s.  It 

is assumed that calibration information will be available in the future, so the 12 satellite 

D5 parameters are also weighted at 3 mm (about 10 ps) RMS accuracy.  The L5 phase 

equations (16) contain non-integer and integer phase parameters that are analogous and 

distinct from the L2 parameters.  The success rate for resolving all 33 DD ambiguities is 

displayed in Figure 3. 

 

 
 

Fig 3. – Success Rate, L1/L2/L5, No Differential Ionosphere Effects 

 

 The triple frequency success rates are still extremely high, and fall between the 

single and dual frequency results.  It is seen that adding the third frequency improves 

geometry, even when the 14 new L5 DCB’s are added to the system. 

 

 

IONOSPHERE ERROR SCENARIOS 

 

 The preceding results were characterized as “short baseline”, since those are the 

only cases where atmospheric effects can be safely ignored.  Ionosphere is parameterized 

in this section, and the troposphere will be parameterized in the subsequent section. 
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 Ionosphere is modeled as distinct values for each satellite-receiver vector.  Thus, 

no assumptions are made regarding azimuthal symmetry, nor about zenith delay mapping 

functions.  The application of a priori ionosphere model data is anticipated.  Therefore, 

following the methods used with the ambiguities, ionosphere is modeled as a 

combination of DD and un-differenced parameters.  Unlike the ambiguities, there is no 

expectation that the DD ionosphere parameters will be integer.  By this formulation, it is 

easy to apply both absolute and relative (i.e. DD) ionosphere model information.  Also, it 

is convenient to express all ionospheric delays in units of meters on the L1 frequency. 

 

 For the L1 models,  
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where 

 Ii
k
  un-differenced ionosphere delay, pivot satellite to base (meters) 

 Ii
l
  un-differenced ionosphere delay, non-pivot satellite to base (meters) 

 Ij
k
  un-differenced ionosphere delay, pivot satellite to rover (meters) 

 kl

ijI   double differenced ionosphere delay (meters) 

 

For the L2 models,  
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where the ionospheric delay on L2 is scaled to units of meters on L1 by, 

 

( )22
1

2

λ
λµ =  

 

Two rank defects were identified after including the ionosphere unknowns.  These 

weaknesses were remedied by introducing 2 DCB equations for the receivers, applied 

with a 33 mm (about 100 ps) RMS accuracy.  The results for the dual frequency case with 

ionosphere estimation (but without external ionospheric data) and 14 DCB weights are 

shown in Figure 4. 

 

 
 

Fig 4. – Success Rate, L1/L2, with Ionosphere Parameters 

 

 A dramatic reduction in the success of fixing all 22 DD ambiguities is evident.  

This confirms the results by others (e.g. [2]) that ambiguity resolution success is closely 

related to ionospheric effects.  Figure 4 also illustrates the importance of considering the 

achievable pseudorange accuracy in GPS modernization. 

 

 Next, the L5 models are extended to include ionosphere parameterization, 
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where the ionospheric delay on L5 is scaled to units of meters on L1 by, 

 

( )25 1

5

λ
λµ =  

 

The success rates of fixing all 33 DD ambiguities for the triple frequency case are 

portrayed in Figure 5. 

 

 
 

Fig 5. – Success Rate, L1/L2/L5, with Ionosphere Parameters 
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 An improvement is seen when adding the third frequency.  However, the 

improvement is modest.  Recall the demanding context of single epoch ambiguity 

resolution. 

 

 Work by Odijk [2] and others illustrates that addition of ionospheric data (for 

example, from GPS monitor networks) has a great improvement of ambiguity resolution.  

The National Oceanic and Atmospheric Administration (NOAA) is now computing and 

distributing first-generation ionosphere models (see 

ftp://ftp.ngs.noaa.gov/cors/ionosphere/icon) which have crossover statistics of 0.5 Total 

Electron Content Unit (TECU) RMS and formal absolute error averaging 1.1 TECU (one 

sigma) [16].  While the current models suffer from track bias, it is expected that these 

precisions will be realizable as accuracies in the future.  It seems reasonable to expect 

relative (DD) accuracy on L1 of 5 cm RMS and absolute accuracy on L1 of 15 cm RMS.  

The addition of 5 cm relative ionosphere weights is presented in Figure 6.  And, the 

combination of 5 cm relative and 15 cm absolute data is shown in Figure 7. 

 

 
 

Fig 6. – Success Rate, L1/L2/L5, 5 cm Relative Ionosphere Model 
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Fig 7. – Success Rate, L1/L2/L5, 5 cm Relative/15 cm Absolute Ionosphere Model 

 

 A major improvement in the success of resolving all 33 DD ambiguities is 

achieved by adding the relative ionosphere data.  While the results are not as good as 

seen in Figure 3, recall that Figure 3 represents cases where either the ionosphere is 

perfectly known, or where the differential ionosphere effect is negligible.  The addition of 

the absolute ionosphere weights of 15 cm RMS in Figure 7 gives a very tiny 

improvement, although it is not evident to the eye. 

 

 

IONOSPHERE/TROPSPHERE ERROR SCENARIOS 

 

 This section completes the atmosphere propagation effects by considering 

troposphere delay.  The troposphere is considered as modeled by means of NOAA 

models (for example: ftp://ddftp.fsl.noaa.gov/outgoing/gpsdist/zwdgrids).  The residual 

troposphere error is assumed to be azimuthally symmetric.  The residual zenith delay at 

each receiver is estimated, and a mapping function, MD, dependent upon vertical angle, v, 

is used to relate the slant range delay to the zenith delay.  Using L1 pseudorange as an 

example,  
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where 
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 Ti, Tj residual zenith tropospheric delay at receiver i or j (meters) 

 MD(v) Neill hydrostatic (dry) mapping function 

 

 The residual troposphere delay term is added to all pseudorange and carrier phase 

equations, where Ti is estimated for the base receiver, and Tj is estimated for the rover 

receiver.  The complete set of models with the troposphere term is not given, but a 

tabulation of all the unknown parameters is provided in the Appendix. 

 

In general practice one corrects for the dry troposphere effect and parameterizes 

the wet troposphere.  But, with the availability of the NOAA models of dry and wet 

tropospheric delay, both elements should have very good corrections.  It is assumed that 

the residual model error will be best mapped by the dominant source, the hydrostatic 

troposphere.  Hence, the Neill hydrostatic mapping function, NMFH2.0, is chosen [17].  

The success rate for resolving all 33 DD ambiguities while estimating residual 

troposphere error is shown in Figure 8. 

 

 
 

Fig 8. – Success Rate, L1/L2/L5, Weighted Ionosphere, Free Troposphere 

 

 The addition of the two residual tropospheric model terms has a significant effect 

on the ambiguity resolution success rate.  Even so, some success is obtained if the 

pseudorange accuracy can be driven to about 20 cm. 
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 Since the residual troposphere error estimation is performed in the context of a 

priori troposphere correction, we weight the troposphere terms based on the accuracy of 

the corrections.  Referring to the formal accuracy in Figure 3 of [18], a 5 mm RMS zenith 

delay accuracy is adopted.  Figure 9 shows the success rates when the 5 mm RMS is 

applied to the base receiver residual troposphere parameter, Ti. 

 

 
 

Fig 9. – Success Rate, L1/L2/L5, Weighted Ionosphere, 5 mm Base Troposphere 

 

The success rate has considerable improvement, even when the weight is applied 

only to the base receiver.  This would represent the case where the troposphere model has 

generally good performance, but where a differential troposphere effect needs to be 

unconstrained to get an effective solution. 

 

 Figure 10 shows the success rates when 5 mm RMS is applied to both the base 

and rover receiver residual troposphere parameters.  This would be the expected success 

rate when the troposphere model is performing within its current formal error bounds. 
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Fig 10. – Success Rate, L1/L2/L5, Weighted Ionosphere, 5 mm Base/Rover Troposphere 

 

 This last figure displays the influence of pseudorange accuracy when both 

tropospheric and ionospheric error sources are augmented by gridded data.  It is seen that 

a very good success rate (95-97%) for single epoch solution is obtained with a 10 to 20 

cm pseudorange RMS. 

 

 

DISCUSSION 

 

 The objective for this paper is to explore additional factors in the modernization 

of GPS and the deployment of Galileo as they pertain to centimeter-level positioning.  

Numerous augmentation infrastructures could be envisioned.  For example, a radiobeacon 

transmission of base receiver GNSS carrier phase data, NOAA atmospheric models, and 

DCB calibration elements through a system like HA-NDGPS [19] is possible. 

 

The focus of this study, modernized pseudorange accuracy, is comprised partly of 

signal-in-space and partly of user equipment contributions.  Atmospheric effects were 

modeled separately.  Clock error would not seem to apply to the target accuracy, since 

both receiver and satellite clock error were estimated.  Only those factors that would not 

be cancelled in a DD pseudorange measurement, such as receiver antenna multipath, 

would be considered in a notional pseudorange error budget. 
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 These results could be extended in numerous ways.  No real distinction is made 

between GPS and Galileo.  The two constellations could be modeled with particular 

orbital planes and slot assignments.  The exact L2 frequency of Galileo (E5b) could be 

used.  Separate error budgets for carrier phase and pseudorange could be assigned to the 

two constellations.  If orbital geometries have detailed modeling, then one should 

consider them around the globe and throughout the repeat cycle of the two systems. 

 

 An additional goal was to study the impact of supporting models.  It was seen that 

DCB and atmospheric data improved the solutions.  What has not been considered is the 

future synergy between GPS modernization, Galileo deployment, and likely improvement 

in these support models and calibration.  Such a synergy will increase the success rates 

displayed here. 

 

 Other support data not studied here in detail are datum and error propagation 

effects of satellite clock and orbit data.  If a study along the lines of this paper is 

conducted that includes these factors, then the boundary between relative and absolute 

(point) positioning will begin to blur.  This could lead to future consideration of a 

hybridized solution method. 

 

 

CONCLUSIONS 

 

 A simulation of single epoch ambiguity resolution success rate under varying 

levels of pseudorange accuracy is conducted with a hypothetical, 12 satellite in view, 

GNSS configuration.  Short baselines scenarios, which neglect atmospheric errors, show 

uniformly high (> 97%) success rates of resolving all DD ambiguities.  Long baseline 

scenarios, which include atmospheric error, show distinctly lower success.  Adding 

weights that reflect the accuracy of DCB calibrations, ionosphere, and troposphere model 

data, greatly improves the success rates.  When these factors are integrated into the 

models, single epoch ambiguity resolution success rates of 95 to 97% are obtained with a 

10 to 20 cm pseudorange RMS.  It may be concluded that increased pseudorange 

accuracy is an important goal in GPS modernization, and deserves additional study. 
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APPENDIX 

 

  Table A-1 – Unknown Parameters, Full Model 

 Number of Unknowns   Type 

 (N--number of satellites) 

N-1   L1 integer DD carrier ambiguities 

N-1   L2 integer DD carrier ambiguities 

N-1   L5 integer DD carrier ambiguities 

3      rover position (XYZ) 

2      pseudorange receiver lumped bias (base and rover) 

2      receiver L2/L1 DCB (base and rover) 

2      receiver L5/L1 DCB (base and rover) 

1      satellite L2/L1 DCB, pivot satellite 

1      satellite L5/L1 DCB, pivot satellite 

N-1     pseudorange satellite lumped bias, non-pivot 

N-1      satellite L2/L1 DCB, non-pivot 

N-1      satellite L5/L1 DCB, non-pivot 

1      L1 float ambiguity, pivot satellite to base 

1      L1 float ambiguity, pivot satellite to rover 

N-1   L1 float ambiguity, non-pivot satellites to base 

1      L2 float ambiguity, pivot satellite to base 

1      L2 float ambiguity, pivot satellite to rover 

N-1   L2 float ambiguity, non-pivot satellites to base 

1      L5 float ambiguity, pivot satellite to base 

1      L5 float ambiguity, pivot satellite to rover 

N-1   L5 float ambiguity, non-pivot satellites to base 

N-1     DD ionosphere 

1     undifferenced iono, pivot satellite to base 

1     undifferenced iono, pivot satellite to rover 

N-1    undifferenced iono, non-pivot satellites to base 

1     residual troposphere, base receiver 

  1     residual troposphere, rover receiver 
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AUTHOR NOTES 

 

 This article was first published by The Institute of Navigation in the journal, 

NAVIGATION, Spring 2005, Volume 52, Number 1, pp.29-38.  Typographical errors 

were corrected in equations 17 and 23.  Reference is also made to Galileo frequency E5b. 


