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ABSTRACT 
 
 Measured vertical to horizontal positional error ratios from FAA data show 
behavior inconsistent with the random error propagation model of DOP.  The current 
almanac gives a mean VDOP/HDOP ratio of 1.474, which does not match the recent 
measured error ratio.  A new measure, Error Scale Factor (ESF), is defined which scales 
systematic error sources and which is analogous to DOP.  The ESF is further refined to 
account for differing ionosphere and troposphere mapping functions.  A Monte Carlo 
simulation illustrates the transfer of the systematic atmospheric residual errors into 
position.  A hybrid error model is constructed which is partially successful in quantifying 
both random and systematic error sources. 
 
 
INTRODUCTION 
 

The recent edition of the Precise Positioning Service (PPS) Performance Standard 
(PS) [1] emphasizes that it only specifies the GPS Signal-In-Space performance, and does 
not define performance of any application of the signal (such as using the GPS signal to 
compute a position).  Given the innumerable applications using GPS for positioning, 
knowing the relationship between the statistics of the measurements and the statistics of 
the positions becomes even more important.  As has been done historically, as well as in 
the PPS-PS Appendix B [1], this relationship is modeled by covariance elements called 
Dilution of Precision (DOP). 
 
 Since the description of DOP is found in numerous references (e.g. [2]), only a 
brief sketch is needed.  Pseudorange observations are solved for position by an “all 
satellites in view” weighted least squares setup: 
 
 (A tQ-1 A) x = A tQ-1 y         (1) 
 
with n satellite observations and 4 unknown parameters, where 
 
 A matrix of observation equation partial differentials (n x 4) 
 Q covariance matrix of observations (n x n) 
 x vector of unknown parameters (4 x 1) 
 y vector of observations (n x 1) 
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The pseudorange observation model is  
 

vdtR ll ++= ρ         (2) 
 

where 
 lR  pseudorange from satellite l to receiver (meters) 

 lρ  geometric range from satellite l to receiver (meters) 
 dt  time bias parameter for receiver (meters)  
 v  residual observational error (meters) 
 
The 4 unknowns are 3-dimensional receiver position (X,Y,Z) and the time bias, dt. 
 
 The variance-covariance matrix of the unknowns is written, 
 
 Qx = (A tQ-1 A)-1        (3) 
 
And, through the principle of linear error propagation, one may express the variance-
covariance matrix of the unknowns in a local geodetic horizon system, h:  
 

Qh = G Qx G t          (4)  
 

where h is a left-hand system ordered [North, East, Up, dt], so that 
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and where φ and λ are receiver geodetic latitude and longitude (positive East), 
respectively.  The DOPs are defined as traces of various submatrices of Qh.  Thus, 
 
 Horizontal DOP HDOP = (qnn + qee) ½   

Vertical DOP  VDOP = (quu) ½     (6) 

Time DOP   TDOP = (qtt) ½    

 Position DOP  PDOP = (qnn + qee  + quu) ½ = (qxx + qyy  + qzz) ½
 Geometric DOP  GDOP = (qnn + qee  + quu  + qtt) ½ = (qxx + qyy  + qzz + qtt) ½ 
 
 A few minor comments related to conventions must be made here.  Time bias, dt, 
is carried as units of meters.  This insures a uniform GDOP computation.  The variance-
covariance matrix of the pseudoranges, Q, is carried as units of squared meters.  While it 
is not required that Q be uniformly weighted, nor that the pseudoranges be considered 
uncorrelated, Q is conventionally taken to be the identity matrix, I.  For consideration of 
DOPs that use different covariances based on GPS broadcast User Range Accuracies 
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(URA), refer to the “K” family of DOPs found in ARINC’s [3-4].  One can envision 
other weighting schemes for Q, such as elevation angle-dependent weights that model 
increased error due to multipath.  But, for this paper, the Q = I convention is used.  
 
 The key point of this paper is Equation (3).  This equation describes random error 
propagation of noise in measurements into the noise of the unknown parameters.  The 
equation is linear for any measurement variance scale factor, k.  If (3) holds, then when 
one halves the dispersion of the measurements (e.g. kQ), one will halve the dispersion of 
the positional error (i.e. kQx).  Such scaling carries through Equations (4), (5), and (6).  
For this reason, DOPs are commonly treated as multipliers that convert range error into 
various forms of positional error. 
 
 As a note on the Q = I convention, this paper follows the derivation and 
assumptions of [2].  However, some recent references (e.g. Section 7.3.1 of [5]) use a 
relation, Q = σ2 I , where σ2 is pseudorange variance.  This has the advantage of explicit 
formulation of the linearity described above, since k = σ2, but requires construction of an 
intermediate (A tA)-1 matrix to develop the DOP factors.  Either approach yields identical 
DOPs. 
 

As discussed in the first paragraph, DOP is a model relationship between signal 
statistics and position statistics.  No model is perfect.  Collins and Langley [6], for 
example, discuss the shortcomings of VDOP in predicting vertical position error.  Testing 
models requires measurements.  In the case of GPS L1 point positioning, FAA-sponsored 
monitoring and analysis of the GPS Standard Positioning Service (SPS) has been 
documented in a quarterly series called the Performance Analysis (PAN) Reports [7]. 
 
 The 95% percentile of positional error, taken comprehensively over space and 
time, without any subsetting whatsoever, is chosen to analyze behavior.  Its computation 
is nonparametric and is straightforward.  Take all measured variates, sort them, and report 
the 95% limit.  If a GPS satellite becomes unavailable due to a maneuver, no special 
consideration is made.  If a particular location has higher noise, it is not considered to be 
the sole source of measurements (i.e. worst site positioning domain accuracy). 
 
 Such a measure, aggregated over space and time, is always found in Figures 5-1 
and 5-2 of the PAN reports [7].  The comprehensive 95% can also be found in the 
Appendix A Performance Summary beginning with PAN #52 (4th Quarter, 2005).  Note 
that the Appendix A 95% “Predictable Accuracy” in the reports through PAN #51 refers 
to a worst site condition, and can not be considered comprehensive.  The PAN report 
95% percentiles of positional error measured since the cessation of SA are reproduced in 
Table 1.   
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  Table 1 – Measured Positional Error, 95%, PAN Reports 
        Report Year/Q  Horiz.(m) Vert.(m) Ratio (V/H) 
 58 2007/2  2.316    4.407  1.903 
 57 2007/1  2.420    4.759  1.967 
 56 2006/4  2.439    4.895  2.007 
 55 2006/3  2.390    4.408  1.844 
 54 2006/2  2.710    4.776  1.762 
 53 2006/1  2.850    4.850  1.702 
 52 2005/4  2.952    5.072  1.718 
 51 2005/3  2.734    4.582  1.676 
 50 2005/2  3.100    5.475  1.766 
 49 2005/1  3.253    5.314  1.634 
 48 2004/4  3.461    5.950  1.719 
 47 2004/3  3.656    5.889  1.611 
 46 2004/2  4.053    5.680  1.401 
 45 2004/1  4.706    6.191  1.316 
 44 2003/4  4.845    9.560  1.973 
 43 2003/3  4.074    7.156  1.757 
 42 2003/2  4.621    7.414  1.604 
 41 2003/1  4.799    8.875  1.849 
 40 2002/4  5.077  12.413  2.445 
 39 2002/3  5.023    8.749  1.742 
 38 2002/2  6.389    7.811  1.223 
 37 2002/1  5.783  10.576  1.829 
 36 2001/4  5.940    9.484  1.597 
  35 2001/3  5.051    8.029  1.590 
  34 2001/2  6.300    8.600  1.365 
  33 2001.1  5.700    7.400  1.298 
  32 2000.4  6.154    8.864  1.440 
  31 2000.3  6.350    7.989  1.258 
  30 2000.2  6.431    8.403  1.307 
 
 By the DOP error model, the positional error should be the product of the 
underlying measured pseudorange error times HDOP or VDOP.  One could solve for the 
pseudorange error by dividing positional error by the appropriate DOP.  But it is also 
convenient to form the positional error ratio, V/H, shown in column 5 of Table 1.  This 
error ratio should, formally, be independent of the magnitude of the range error.  As such, 
one expects the positional error ratio, V/H, to be relatively uniform, and it should also 
equal the VDOP/HDOP ratio.  However, all this is founded on Equation (3), which only 
holds for random errors. 
 
 Inspection of the measured positional errors in Table 1 shows general 
improvement in horizontal accuracy, and improvement in vertical accuracy subject to a 
number of spikes (PAN Reports 37, 40, and 44).  The ratios of the vertical to horizontal 
error (V/H) enhance the spikes, and also show a recent increase over the past 3 years.  
The ratio column of Table 1 does not portray the uniform behavior expected for an 
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underlying pseudorange random error. 
 
 The PAN reports form a challenge to our ability to understand and describe the 
measured performance of the GPS system.  In the past, when Selective Availability (SA) 
was imposed on the GPS signal, the measured pseudorange displayed random, albeit time 
correlated, statistics [8].  DOP was effective then in relating SA-laden range error to 
positional error.  Now, with SA set to zero, the role of DOP should be revisited. 
 
 
RANDOM ERROR PROPAGATION 
 
 To establish the current behavior of DOP, we use the SEM format almanac from 
ARINC for GPS week 1436, seconds of week 405504.  Software was written to evaluate 
satellite positions from the almanacs and compute DOPs from the equations above that 
are based on an assumption of random errors.  HDOP and VDOP time series for July 20, 
2007 at a point (38° 53’ 22.08258” N, 77° 02’ 06.86520” W, 149.201 m ellipsoidal 
height) near the Washington Monument with a 5° vertical angle cutoff are displayed in 
Figure 1. 
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Fig. 1 – HDOP and VDOP, July 20, 2007, Washington D.C., 5° Cutoff 
 
 Figure 1 is quite suggestive.  The general magnitude of HDOP is around 1.0 and 
the VDOP is about 50% larger.  Neither measure is uniform.  Considerable short 
wavelength structure is evident, including a thin “spike” around 585 minutes.  Additional 
time series at 1-second spacing identified an even thinner spike of 55 seconds duration 
from 7:42:03 to 7:42:58 GPS time.  Given the abrupt, second-to-second transitions in 
DOP, and given that the GPS satellites orbit relative to the Earth at about 4 km/second, 
one may suspect that short spatial scales as well as short time scales are needed to 
describe DOP behavior. 
 
 To limit the problem somewhat, the conterminous United States was selected as a 
study area.  HDOP and VDOP, with a 5° cutoff, were computed on a regular 3’x3’ grid 
over 24°-53° N, 230°-294° E, that contained 581 rows and 1281 columns.  And, these 
DOP grids were computed for 2880 30-second epochs through July 20, 2007.  This fine 
time/space granularity was selected to capture most of the complex DOP structure seen in 
Figure 1.  A total of 2,143,471,680 HDOPs (and VDOPs) were computed in just under 6 
hours on a 3.8GHz Pentium 4-670 PC. 
 
 A grayscale plot for the HDOP distribution over CONUS at 2:42:30 GPS time is 
shown in Figure 2.  This particular epoch is selected to show an HDOP excursion 
(HDOP=2.58) seen in the triangular zone just north of Lake Ontario .  We see that DOPs 
are rather uniform within zones, and that these zones have curved boundaries. The 
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boundaries are sharply delineated and move geographically in time, which explains the 
jumps seen in high-rate DOP time series (e.g. Figure 1).  Inspection of sky coverage plots 
confirms that the curved boundaries are the geographic locations where particular GPS 
satellites rise or set.  Thus, the broad, curved boundaries seen in Figure 2 are the 
footprints of the various GPS satellites.  When Figure 2 is rendered with a linear rainbow 
color scale, one more easily notices that some of the zones gradually vary in hue.  This 
shows some variation of DOP as the spatial mappings of the local elevation angles 
change for a given set of GPS satellites in a region. 
 

  
 

Fig. 2 – HDOP, July 20, 2007, 2:42:30 GPS Time, 5° Cutoff 
 
 The 2880 color images of HDOP (and VDOP) were converted into an animation 
that runs 4 minutes, 48 seconds at 10 frames/second.  The effect is somewhat 
kaleidoscopic, as the various footprints cycle across one another, and as the zones change 
color.  The footprint boundaries transit across the map in various directions, and create a 
changing set of triangular and quadrilateral zones of fairly uniform DOP.  Zones spatially 
increase or shrink in time.  Zone DOP can take a local maximum, a local minimum, or 
just some intermediate value.  There is no lower limit to temporal or spatial scale of a 
given DOP zone delimited by three transiting boundaries.  For example, the zone of 
maximum DOP portrayed in Figure 2 actually decreases in size in subsequent images.  
DOP magnitude in a given zone often changes in time.  The animation shows that the 
DOP maximums are quite infrequent, and the DOPs generally cluster around the low end 
of the color scale.  The animation is available at:  home.comcast.net/~dmilbert/dopstuf . 
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 The animation somewhat confirms the description on page 4-7 of [4] that 
describes a general left-to-right movement of a DOP hole.  However, the animation also 
shows cases where there is a right-to-left motion of a boundary.  This increases the 
complexity of the zonal patterns beyond a simple left-to-right drift.  The animation 
absolutely confirms the description of the GPS Support Center [9] that GPS performance 
has “fronts” and that the features can have small scales. 
 
 To get a quantitative measure of distribution, the 2,143,471,680 HDOPs (and 
VDOPs) are now histogrammed with a bin width of 0.01 in Figure 3.  Tabulations of 
various percentiles, computed from the bin counts, are displayed in Table 2.  HDOP 
ranges from 0.600 to 2.685, and VDOP ranges from 0.806 to 3.810. 
 
  Table 2 – Percentiles of DOP, July 20, 2007, 5° Cutoff 
   Percentile HDOP  VDOP 

 90%    1.15    1.77 
 95%    1.24    1.92 

   99%    1.44    2.36 
   99.9%    1.77    2.83 
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Fig. 3 – HDOP and VDOP, July 20, 2007, 5° Cutoff 
 
 The distributions in Figure 3 show HDOP to be in the general vicinity of 1.0, and 
the VDOP around 1.5 with a skew to the left.  These results are probably smaller than 
some may expect, even when considering that the study region is restricted to CONUS.  
In addition, the distributions suggest the ratio, VDOP/HDOP, is less than 2.  To test this, 
the VDOP/HDOP ratios are plotted with a bin width of 0.01 in Figure 4. 
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Fig. 4 – VDOP/HDOP Ratio, July 20, 2007, 5° Cutoff 
 
 Figure 4 confirms that the VDOP/HDOP ratio is around 1.5.  The average ratio is 
1.474 and the mode is 1.43.  Even more important is that the DOP ratio of 1.43 or 1.474 
is significantly different than the Table 1 position error ratio, V/H=1.903, measured for 
the most recent quarter.  This discrepancy highlights the earlier discussion that measured 
position error ratios did not seem to track DOP ratios.  The likely culprit is the presence 
of non-negligible error sources in the measured pseudoranges that can not be treated as 
random noise. 
 
Cutoff Angle Dependence 
 
 The material above shows the character of the sharp transitions in DOP time 
series and the linkage to satellite “footprints”.  Since the DOP zone boundaries are related 
to satellites rising and setting, it is natural to expect a relation to a selected cutoff limit of 
the elevation angle.  This is now explored. 
 
 While applying a 10° cutoff limit, 2,143,471,680 HDOPs (and VDOPs) are 
computed and histogrammed with a bin width of 0.01 in Figure 5.  Tabulations of various 
percentiles, computed from the bin counts, are displayed in Table 3.  HDOP ranges from 
0.684 to 7.813, and VDOP ranges from 0.936 to 18.348.  This is a large increase in the 
maximum DOPs caused by increasing the cutoff angle by 5°.  The histogram ranges in 
Figure 5 are set to match Figure 3 to allow easy comparison. 
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  Table 3 – Percentiles of DOP, July 20, 2007, 10° Cutoff 
   Percentile HDOP  VDOP 

 90%    1.36    2.18 
 95%    1.50    2.39 

   99%    1.83    3.04 
   99.9%    2.66    4.77 
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Fig. 5 – HDOP and VDOP, July 20, 2007, 10° Cutoff 
 
 Next, a 15° cutoff limit is used while recomputing 2,143,471,680 HDOPs (and 
VDOPs), histogrammed with a bin width of 0.01 in Figure 6.  Tabulations of various 
percentiles, computed from the bin counts, are displayed in Table 4.  HDOP ranges from 
0.735 to 26.335, and VDOP ranges from 1.045 to 72.648.  The histogram ranges in 
Figure 6 are set to match Figures 3 and 5 to allow easy comparison. 
 
  Table 4 – Percentiles of DOP, July 20, 2007, 15° Cutoff 
   Percentile HDOP  VDOP 

 90%    1.67    2.99 
 95%    1.90    3.61 

   99%    2.84    5.76 
   99.9%    4.87  10.25 
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Fig. 6 – HDOP and VDOP, July 20, 2007, 15° Cutoff 
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 Inspection of the Figures 3, 5, 6 and Tables 2, 3, 4 shows that DOPs are markedly 
sensitive to cutoff angles.  The histogram tails increase, and the maximum DOPs 
dramatically increase.  The 95% HDOP increases by about 50% when the cutoff angle 
increases from 5° to 15°.  The solutions weaken somewhat, and the poorer solutions get 
much worse.  The effect is somewhat greater for VDOP. 
 
 Implications are profound.  One normally considers DOP as a property of the 
satellite constellation that has a space-time mapping.  DOP is seen to strongly depend 
upon horizon visibility.  This is a completely local property that is highly variable 
throughout the country.  In short, DOP depends on the antenna site as well as the 
constellation.  In a single experiment described in the Appendix, cutoff angle is seen to 
be more important than the constellation population. 
 
 
SYSTEMATIC ERROR PROPAGATION 
 
 It is known that certain error sources in GPS are systematic and, as such, display 
different behaviors from random error.  [10] describes the cancellation of ionospheric 
delay in position solutions and offers an analysis.  This point is reiterated in [11], who 
also state that residual ionospheric error should not be considered random.  Section 7.3.2 
of [5] recognizes the systematic error correlation between satellites invalidates the 
assumption of random error propagation of DOPs.  And, as described earlier, [6] points 
out the failure of VDOP to characterize tropospheric error.  New metrics for systematic 
positional error are needed. 
 

Consider a systematic bias, b, in measured pseudorange, R.  One may propagate 
the bias, b, through the least squares adjustment (1) by setting y = b. Vector x then 
contains the differential change (error) in coordinates (δx, δy, δz, δt) induced by the bias.  
The coordinate error can then be expressed in the local geodetic horizon system by 
 
 xh = G x          (7) 
 
And, the positional systematic error is defined as 
 
 Horizontal Error (δN2 + δE2) ½      (8) 
 Vertical Error  |δU| 
 
 As with DOP, the system of equations (1), (7), and (8) is linear for any 
measurement bias scale factor, k that applies to all satellite pseudoranges in an epoch.  
Thus, if one halves the bias that applies to all pseudoranges (e.g. ky) then one will halve 
the associated coordinate error, kx and kxh.  Analogous to DOP, we take bias as units of 
meters with a base error b=1, and designate the resulting measures (8) as Horizontal Error 
Scale Factor (HESF), and Vertical Error Scale Factor (VESF).  This adds a capability of 
developing error budgets for systematic effects that parallels DOP. 
 
 Systematic errors in GPS position solutions have a distinctly different behavior 
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than random errors.  This is illustrated by a trivial example that is presented to emphasize 
this point.  If one repeats any of the tests above with a constant value of b, one will find 
that, aside from computer roundoff error, no systematic error propagates into the position.  
The coordinates are recovered perfectly, and the bias, b, is absorbed into the receiver time 
bias parameter, dt.  This is no surprise, since the model (2) is constructed to solve for a 
constant bias.  Of interest is that the coordinate recovery is uniformly perfect irrespective 
of the values of DOP.  See [10] for an algebraic analysis of systematic error transfer into 
dt. 
 
 Of the errors that contaminate pseudoranges, many of them seem systematic when 
considered for one or two epochs, but will soon yield random statistics when considered 
over spans of time or over the entire constellation.  Multipath, for example, plagues low 
elevation angle measurements.  But multipath will not be in phase for two satellites at the 
same elevation angle.  Thus, the “all satellites in view” system (1) will not tend to absorb 
multipath error into the dt parameter. 
 
 Ionosphere and troposphere, on the other hand, cause systematic error in 
pseudoranges that are common to all satellites.  These systematic errors are greater for 
lower elevation satellites than for higher elevation satellites.  So, unlike the trivial 
example above, this error can not be perfectly absorbed into dt.  However, the 
systematics never vanish, even for satellites at zenith.  One may expect some resulting 
positional error that does not behave randomly. 
 
 The systematic effect of ionosphere and troposphere differ through their mapping 
functions.  These are functions of elevation angle, E, and are scale factors to the 
systematic effect at zenith (E=90°).  Because of the different altitudes of these 
atmospheric layers, the mapping functions take different forms.  For this reason, 
systematic error scale factors (ESFs) for ionosphere and troposphere must be considered 
separately. 
 
Ionosphere Error Scale Factor 
 
 Following Figure 20-6 of the IS-GPS-200D [12], the ionospheric mapping 
function, F, is 
 
 F = 1.0 + 16.0 (0.53 - E)3 (E in semicircles)    (9) 
 
and where semicircles are angular units of 180 degrees and of π radians.  Since the base 
error is considered b=1 for ESFs, y is simply populated with the various values of F 
appropriate to the elevation angles, E, of the various satellites visible at a given epoch. 
 
 HESF and VESF ionosphere time series for July 20, 2007 at a point (38° 53’ 
22.08258” N, 77° 02’ 06.86520” W, 149.201 m ellipsoidal height) near the Washington 
Monument with a 5° vertical angle cutoff are displayed in Figure 7.  The figure portrays 
how systematic ionosphere error will be magnified into positional error, just as DOPs 
portray how random pseudorange error is magnified into positional error. 
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Fig. 7 – HESF and VESF, Ionosphere, July 20, 2007, Washington D.C., 5° Cutoff 
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 Figure 7 is extremely different than its DOP analog in Figure 1.  The ESFs are 
more jagged, and show more pronounced increases and decreases between the 
discontinuities.  Further, the HESF-I are much smaller than the HDOP, and the VESF-I 
have an average larger magnitude than the VDOP.  The figures also show ionosphere 
error has a greater influence on the height than predicted by DOP. 
 
 Both troposphere and ionosphere propagation error leads to error in height.  The 
mechanism underlying the behavior in Figure 7 is not obvious.  Consider the simplified 
positioning problem in Figure 8, where we solve for Up and receiver bias, dt.  
Atmosphere will cause the pseudoranges AO, BO, and CO to measure systematically 
longer.  However, ionosphere error will be 3 times larger at low elevation angles than at 
the zenith.  (Troposphere error will be 10 times larger at low elevation angles than at the 
zenith.) 
 
 As a “toy” example, assume the zenith pseudorange, BO, measures 5 meters too 
long due to unmodeled ionosphere.  Then the horizon pseudoranges, AO and CO, will 
measure 15 meters too long.  AO and CO can’t both be 15 meters too long at the same 
time, so that bias is absorbed by the receiver bias term, dt.  That dt term is also a 
component of the Up solution from BO.  While the AO and CO ranges have superb 
geometry in establishing clock bias, they also have terrible geometry in establishing 
height. The height is solved from the BO range that is overcorrected by 10 meters. Point 
O rises by 10 meters.  The presence of the receiver bias term, dt, causes atmospheric 
systematic error to be transferred to the height [13]. 
 

 
 

Fig. 8 – Schematic of Pseudorange Positioning 
 
 Next, the 2,143,471,680 ionosphere HESFs (and VESFs) are histogrammed in 
Figure 9.  Tabulations of various percentiles, computed from the bin counts, are displayed 
in Table 5.  Ionosphere HESF ranges from 0.0 to 0.440, and VESF ranges from 1.507 to 
2.765. 
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 Table 5 – Percentiles of ESF, Ionosphere, July 20, 2007, 5° Cutoff 
   Percentile HESF-I VESF-I 

 90%    0.140    2.35 
 95%    0.162    2.40 

   99%    0.205    2.48 
   99.9%    0.258    2.57 
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Fig. 9 – HESF and VESF, Ionosphere, July 20, 2007, 5° Cutoff 

 
 The distributions of the ESFs in Figure 9 differ profoundly from the DOPs.  
Ionosphere error is seen to have a weak mapping into horizontal positional error, with 
HESF-I values approaching zero, and having a long tail.  The VESF, on the other hand, is 
comparable to the magnitude of ionosphere mapping function at a low elevation angle.  
The VESFs also fall into a fixed range, without long tails, and are skewed to the right. 
 
Troposphere Error Scale Factor 
 
 There is no standard troposphere model specified in the IS-GPS-200D [12], 
although application of some kind of tropospheric model is shown in Figure 20-5.  A 
variety of troposphere models and mapping functions are available in the literature.  The 
FAA WAAS MOPS [14] is selected since it is widespread.  It specifies the Black and 
Eisner [15] mapping function M(E), 
 

 2/12 ))(sin002001.0(
001.1)(

E
EM

+
=       (10) 

 
As was done for the ionosphere ESFs, y is populated with the various values of M for the 
satellites visible at a given epoch. 
 
 HESF and VESF troposphere time series for July 20, 2007 at the point near the 
Washington Monument with a 5° vertical angle cutoff are displayed in Figure 10. 
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Fig. 10 – HESF and VESF, Troposphere, July 20, 2007, Washington D.C., 5° Cutoff 
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 While Figure 10 shares a number of properties with Figure 9, it can be said the 
tropospheric ESFs are even more jagged than the ionospheric ESFs.  The HESF-Ts are 
significantly larger than the HESF-Is, showing that troposphere propagation error can 
more readily influence horizontal position.  The VESF-Ts are also roughly comparable to 
the magnitude of the troposphere mapping function, M(E), at low elevations.  But, since 
the M can reach up to a factor of 10, the VESF-Ts are correspondingly larger than the 
VESF-Is of Figure 10. 
 
 The 2,143,471,680 troposphere HESFs (and VESFs) are histogrammed in Figure 
11.  Tabulations of various percentiles, computed from the bin counts, are displayed in 
Table 6.  Troposphere HESF ranges from 0.0 to 5.203, and VESF ranges from 1.882 to 
13.689. 
 
 Table 6 – Percentiles of ESF, Troposphere, July 20, 2007, 5° Cutoff 
   Percentile HESF-T VESF-T 

 90%    1.54    7.98 
 95%    1.80    8.58 

   99%    2.33    9.74 
   99.9%    2.99  10.90 
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Fig. 11 – HESF and VESF, Troposphere, July 20, 2007, 5° Cutoff 
 
 The troposphere ESFs in Figure 11 have similarities and differences from the 
ionosphere ESFs of Figure 10.  Troposphere error maps more strongly into the horizontal.  
The VESFs are about ten times larger than the HESFs.  And, the VESFs still fall into a 
fixed range, without long tails.  Of interest are the different shapes of the left hand and 
right hand of the VESF-T distribution. 
 
 Unlike DOP, which is derived from random error propagation, ESF is constructed 
for systematic error propagation.  A good “vest pocket” number for the tropospheric 
delay of pseudorange at zenith is 2.4 m at mean sea level.  Thus, without a troposphere 
model, one can expect horizontal error of 1.80 x 2.4 m = 4.32 m or less 95% of the time 
according to Table 6.  Similarly, the VESF-T in Figure 11 predicts a middle value of 6 x 
2.4 m = 14.4 m of error in height without any troposphere model. 
 
 We now briefly consider the behavior of ESF under an increased cutoff angle.  
The methodology uses the same fine grained space-time grids with a 10° cutoff angle.  In 
the interests of concision, the histograms are not plotted.  The various percentiles, 
computed from histogram bin counts, are displayed in Table 7.  The 10° cutoff 
ionosphere HESF ranges from 0.0 to 0.530, and VESF ranges from 1.010 to 2.731. 
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 Table 7 – Percentiles of ESF, Ionosphere, July 20, 2007, 10° Cutoff 
   Percentile HESF-I VESF-I 

 90%    0.138    2.19 
 95%    0.158    2.23 

   99%    0.205    2.33 
   99.9%    0.295    2.45 
 
The process is also applied to the troposphere ESF with a 10° cutoff angle.  The various 
percentiles, computed from histogram bin counts, are displayed in Table 8.  10° cutoff 
troposphere HESF ranges from 0.0 to 3.228, and VESF ranges from 1.161 to 9.192. 
 
 Table 8 – Percentiles of ESF, Troposphere, July 20, 2007, 10° Cutoff 
   Percentile HESF-T VESF-T 

 90%    0.76    5.00 
 95%    0.90     5.30 

   99%    1.17    5.95 
   99.9%    1.60    6.75 
 
 Comparing Table 7 to Table 5 shows minor improvements in the ionosphere ESF 
with a 10° cutoff.  This is a distinct difference from DOP (Tables 2 and 3), which showed 
degraded precision with a larger cutoff angle.  Comparing Table 8 to Table 6 
demonstrates a major improvement in troposphere ESF with a 10° cutoff.  The mapping 
of troposphere error into the horizontal is cut in half, and improvement in vertical is 
nearly as much. 
 
 This contrast of reduced systematic error (ESF) and increased random error 
(DOP) with increased cutoff angle immediately leads one to an optimization problem.  
One could desire to find the cutoff angle that provides the minimum sum of random and 
systematic error.  It is likely that two different answers would be found, depending upon 
if the user is interested in horizontal or vertical position accuracy.  And the optimal 
solution would strongly depend upon the levels of unmodeled ionosphere and 
troposphere relative to the other random error sources. 
 
 
GPS ERROR MODELS 
 
 The systematic error scale factors, ESFs, described above are seen to be the 
analog of the random error scale factors known as DOP.  When we consider the character 
of GPS error, it is sometimes difficult to describe it as random or systematic.  Ionosphere, 
for example, is always present, and could be called a systematic effect.  On the other 
hand, ionosphere error follows diurnal and 11-year solar cycles at a location.  So, 
ionosphere could be said to have some type of dispersion about a mean when considered 
over a century. 
 
 In practice, one can expect single frequency pseudoranges to be corrected by the 
ionosphere model specified in the IS-GPS-200D [12].  The broadcast ionosphere model is 
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not perfect.  One is again posed with a question: Is residual ionosphere error random or 
systematic?  Klobuchar [16] describes the broadcast model as being an RMS correction 
of at least 50%.  This suggests a random error model.  However, Komjathy [17] describes 
an average update interval of the broadcast ionosphere coefficients of 6.4 days, with an 
interval range of 1 to 10 days, and that the coefficient set selection is based in part on 10 
discrete levels of solar flux activity.  Such granular criteria coupled with the low spatial 
resolution available from only 8 broadcast coefficients leads one to a systematic error 
model for residual ionosphere. 
 
 The litmus test in selecting between a random or systematic model depends on if 
the effect (or residual effect, if modeled) has a significant common mode on all visible 
satellites at an epoch.  If there is a significant common effect, such as 2.4 to 24 meters of 
troposphere delay, the effect will be partly absorbed by the dt parameter, and one will get 
the behaviors of the ESFs.  An effect like pseudorange multipath, which is not coherent 
from one pseudorange to the next, will have a behavior closer to DOPs. 
 
 To develop a quantitative positional error description from a source that has a 
short term systematic effect with a long term random behavior, a Monte Carlo model of 
residual ionosphere error is applied.  As with the ionospheric ESFs, we solve the set of 
equations (1), (7) and (8), and the y vector is populated with Fb, where F is obtained from 
Equation 9.  Unlike the ESFs, the base error, b, is no longer set to 1.  Rather, b is set to 
50% of the evaluated broadcast ionosphere multiplied by a Gaussian normal variate, v.  
The normal variates are obtained from a Box-Muller transformation [18] fed with a 
L’Ecuyer long period uniform random number generator, ran2 [19]. 
 
 To avoid a forbidding computational effort, we take advantage of the very fine 
time/space granularity of the grid time series to exercise the Monte Carlo simulation.  A 
new random normal variate, v, is established for each of the 2,143,471,680 grid node time 
steps for July 20, 2007.  Note, per the discussion of systematic error above, v is kept 
constant for all the visible satellites at a given grid node and time step.  Keeping each 
node-epoch v constant is critical to model the residual systematic error.  The horizontal 
and vertical errors from Equation (8) are histogrammed in Figure 12.  Tabulations of 
various percentiles, computed from the bin counts, are displayed in Table 9.   
 
 Table 9 – Percentiles of Positional Error, July 20, 2007, Residual Ionosphere 
   Percentile Horiz. (m) Vert. (m) 

 90%    0.355    3.03 
 95%    0.530    3.69 

   99%    0.955    5.15 
   99.9%    1.555    7.23 
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Fig. 12 – Horizontal and Vertical Error, Residual Ionosphere, July 20, 2007, 5° Cutoff 
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 The positional error due to residual ionosphere distributions in Figure 12 is based 
on the broadcast ionosphere of July 20, 2007, and would certainly vary at other times of 
the solar cycle.  In addition, the 50% RMS value, itself, coupled with the ionosphere 
coefficient selection process, deserves additional exploration.  The discussion describes 
possible refinements. 
 
 As mentioned earlier, the IS-GPS-200D [12] does not specify a troposphere 
model. We consider the FAA WAAS [14] troposphere model instead.  An excellent 
analysis by Collins and Langley [6] shows residual troposphere error of 4.9 cm RMS 
subject to a remaining 2 cm systematic bias.  That 2 cm residual bias can be directly 
scaled by the HESF-T and VSEF-T values in Figure 11 and Table 8 to get a portion of the 
troposphere residual error.  Alternatively, one could choose a new, modified version of 
the model, UNB3m [20].  The UNB3m model removes most of the residual bias, and 
maintains the small RMS residual troposphere error. 
 
 To get the positional error due to 4.9 cm RMS of residual troposphere error, the 
Monte Carlo method described above is applied with the Black and Eisner tropospheric 
mapping function [15] of Equation (10) and b=0.049.  While UNB3m does specify the 
Niell mapping functions [21], the WAAS protocol is retained since little difference was 
noted in Collins and Langley [6].  Since the troposphere model is expected to overpredict 
or underpredict for all visible satellites at an epoch and location, the Gaussian normal 
variate, v, is kept constant for all the visible satellites at each given grid node and time 
step, as was done for Figure 12 and Table 9. 
 

The horizontal and vertical errors from Equation (8) are histogrammed in Figure 
13.  Tabulations of various percentiles, computed from the bin counts, are displayed in 
Table 10. 
 
 Table 10 – Percentiles of Positional Error, Residual Troposphere 
   Percentile Horiz. (m) Vert. (m) 

 90%    0.08    0.48 
 95%    0.10    0.60 

   99%    0.16    0.84 
   99.9%    0.26    1.17 
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Fig. 13 – Horizontal and Vertical Error, Residual Troposphere, July 20, 2007, 5° Cutoff 
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 The horizontal residual troposphere error is seen to be negligible.  It is notable 
that the horizontal 95% percentile is about double the RMS residual troposphere model 
error.  The residual troposphere error, on the other hand, has a much larger effect on 
vertical position error.  The vertical 95% percentile is six times larger than the horizontal, 
which is slightly less than the approximation reported by Collins and Langley [6].  The 
magnitude of the troposphere mapping function at low elevation angles in conjunction 
with the action of the dt bias parameter lead to a bigger vertical error effect than predicted 
from simple VDOP scaling of a 4.9 cm RMS residual troposphere error.   
 
 We close this section by providing a first attempt of a calibrated error model 
derived from the PAN measurements that accommodates both random error and 
systematic error behaviors.  To begin, consider the simple random error model (as found 
in Appendix B of the PPS-PS [1]) 
 
 Mh = r Dh         (11) 
 Mv = r Dv 
 
where r denotes an unknown calibration coefficient for random error, and where 
 
 Dh is HDOP 95% percentile at 5° cutoff (1.24 by Table 2) 
 Dv  is VDOP 95% percentile at 5° cutoff (1.92 by Table 2)  
 Mh is measured 95% percentile horizontal error (varies with PAN #, Table 1) 
 Mv  is measured 95% percentile vertical error (varies with PAN #, Table 1). 
 
One immediately sees by inspection that we have not one, but two estimates of r for each 
PAN report.  And, these estimates are inconsistent. 
 
 Now, add the ionosphere and troposphere components to produce a hybrid error 
model 
 
 Mh

2 = r2 Dh
2 + i2 Ih

2 + t2 Th
2       (12) 

 Mv
2 = r2 Dv

2 + i2 Iv
2 + t2 Tv

2 
 
where i denotes an unknown calibration coefficient for residual ionosphere systematic 
error, and where 
 
 Ih is HESF-I 95% percentile at 5° cutoff (0.162 by Table 5) 
 Iv  is VESF-I 95% percentile at 5° cutoff (2.40 by Table 5)  
 t is a coefficient for residual troposphere systematic error 
 Th is HESF-T 95% percentile at 5° cutoff 
 Tv  is VESF-T 95% percentile at 5° cutoff. 
 
Given the inability to solve for 3 coefficients with 2 positional error measures in a 
quarter, we treat the residual troposphere as resolved, and substitute the 95% values from  
Table 10:  
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 Mh
2 = r2 Dh

2 + i2 Ih
2 + (0.10)2       (13) 

 Mv
2 = r2 Dv

2 + i2 Iv
2 + (0.60)2 

 
This leads to a 2x2 linear system for each PAN quarter.  The coefficients are solved and 
displayed in Table 11. 
 
  Table 11 – Hybrid Error Model, 95%, PAN Reports 
        Report Year/Q  Horiz.(m) Vert.(m) Random(m) Iono.(m) 
 58 2007/2  2.316  4.407  1.861  1.045 
 57 2007/1  2.420  4.759  1.944  1.205 
 56 2006/4  2.439  4.895  1.958  1.282 
 55 2006/3  2.390  4.408  1.922  0.974 
 54 2006/2  2.710  4.776  2.181  0.924 
 53 2006/1  2.850  4.850  2.295  0.807 
 52 2005/4  2.952  5.072  2.376  0.888 
 51 2005/3  2.734  4.582  2.202  0.693 
 50 2005/2  3.100  5.475  2.495  1.076 
 49 2005/1  3.253  5.314  2.621  0.667 
 48 2004/4  3.461  5.950   2.787  1.056 
 47 2004/3  3.656  5.889  2.946  0.635 
 46 2004/2  4.053  5.680  3.271     * 
 45 2004/1  4.706  6.191  3.800     * 
 44 2003/4  4.845  9.560  3.893  2.471 
 43 2003/3  4.074  7.156  3.279  1.395 
 42 2003/2  4.621  7.414  3.724  0.777 
 41 2003/1  4.799  8.875  3.860  2.019 
 40 2002/4  5.077  12.413  4.060  4.017 
 39 2002/3  5.023  8.749  4.044  1.661 
 38 2002/2  6.389  7.811  5.163     * 
 37 2002/1  5.783  10.576  4.653  2.345 
 36 2001/4  5.940  9.484  4.788  0.938 
  35 2001/3  5.051  8.029  4.071  0.721 
  34 2001/2  6.300  8.600  5.086     * 
  33 2001.1  5.700  7.400  4.604     * 
  32 2000.4  6.154  8.864  4.966     * 
  31 2000.3  6.350  7.989  5.130     * 
  30 2000.2  6.431  8.403  5.194     * 
* denotes an inconsistent solution, signaled by a negative i2 
 
 The inconsistent solutions are not a surprise, given that the DOP and ESF were 
computed for July 20, 2007.  Some may not expect that 3 years of these hybrid error 
calibrations could have been performed using current DOP and ESF.  Of course, an error 
model can be made with DOP and ESF computed from archived almanacs. 
 
 What is remarkable in Table 11 is the smooth transition of the random error 
column in time.  This immediately suggests comparison to data on GPS Signal-In-Space 



 30

(SIS) User Range Error (URE).  Figures of SIS URE by the GPS Operations Center [22] 
portray average values of about 1.05 m for January 1, 2006 and about 0.97 m for July 20, 
2007.  Table 11 shows larger reduction in random error over the same interval.  
Ionosphere error is likely to have been only partially calibrated by the error fitting 
procedure.  This also suggests that average SIS URE is another data set which can be 
brought to bear on the hybrid error model calibration problem. 
 
 This hybrid error model is just a first attempt at simultaneously reconciling 
random and systematic effects.  It shows some capability to filter ionosphere error from 
other truly random noise sources.  Consider that this preliminary model only used July 
20, 2007 DOP and ESF values to fit 29 quarters of data that reached back to 2000.  In 
addition, both DOP and ESF are sensitive to cutoff angle, and it was assumed that a 5° 
cutoff was suitable for the PAN network.  The 95% percentile from the PAN reports was 
chosen since it was the only comprehensive statistic provided.  A 50% percentile, if it had 
been provided, is a more robust statistic.  Despite these factors, the model does relate 
measured PAN statistics to a consistent set of error budget coefficients.  This hybrid error 
model is partially successful in quantifying both random and systematic error sources. 
 
 
DISCUSSION 
 
 DOP was first applied to GPS positioning 30 years ago in [2].  Since that time, the 
GPS system has evolved to where it is capable of SIS URE of about 1 meter [22], and 
CONUS horizontal positions better than 2.5 meters 95% of the time [7].  The assumption 
of atmospheric error having a random effect on the single frequency point position 
problem is now seen to have broken down.  We are currently in the solar cycle minimum, 
and the systematic error from the ionosphere will have an even larger share of the error 
budget in the coming years.  Systematic error propagation needs to be considered. 
 
 This study can be extended in numerous ways.  For example, global error 
distribution could be measured by means of the International GNSS Service (IGS) [23] 
tracking network much as the PAN network does.  The exact cutoff angles for each of the 
PAN network stations could be established from analysis of the GPS raw data in the 
Continuously Operating Reference Stations (CORS) archives of the National Geodetic 
Survey [24].  In principle, it would be possible to reproduce PAN analysis from the 
CORS data, as well as supplement it with other stations. 
 
 Additional data sets can be used to construct more sophisticated error budgets.  
Mention was made above of the GPS Operations Center daily assessment of SIS URE 
[22].  Performance of the broadcast ionosphere model could be independently assessed 
by means of IGS ionosphere TEC grids, ionosphere products from the Center for Orbit 
Determination in Europe (CODE) [25], or the real-time ionosphere product by NOAA 
[26].  Similarly, one can independently assess some reference troposphere model, such as 
UNB3m [20], by means of IGS troposphere grids, UNB online products [27], and the 
NOAA GPS-Met network [28].  (Note that [27] currently displays images of the 
performance of UNB3 and UNB3m compared to their new models.) 
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 Additional data enables extension of the hybrid error model of Equation (12) by 
adding more observation equations and error budget components.  A least squares 
adjustment solves this more elaborate system.  One might also tailor the error model 
calibration to the monitor stations, as demonstrated by the comprehensive 95% percentile 
data found in Table 5-1 of the PAN reports [7].  Here, one constructs multiple instances 
of Equation (12), but using the DOP and ESF unique to each monitor station. 
 
 As an alternative approach to quantifying systematic error propagation by 
Equations (1), (7) and (8), one could study the “DOP-like” quantities that arise from more 
sophisticated treatments of the pseudorange covariance matrix, Q.  For example, 
Equation (7.68) of [5] describes a covariance matrix that not only deweights low 
elevation angle satellites, but also introduces correlations reflecting the geometry of the 
ionosphere mapping function (Eq. 9).  It would be interesting to see how such weight-
based approaches would compare to ESF in construction of GPS error models. 
 
 
CONCLUSIONS 
 
 Computation of measured vertical to horizontal positional error ratios from FAA 
PAN report data shows non-uniform behavior inconsistent with the random error 
propagation model of DOP.  Computation and animation of HDOP and VDOP at a 30 
second interval on a regular 3’x3’ grid demonstrate that DOP has broad, curved, and 
distinct boundaries reflecting satellite footprints.  The motion of these boundaries leads to 
intersections and zones (e.g. DOP “holes”) that can be arbitrarily small in space and time.  
For CONUS on July 20, 2007 the 95% percentile is 1.24 for HDOP and 1.92 for VDOP.  
The mean VDOP/HDOP ratio is 1.474, which does not match the most recent measured 
PAN positional error ratio.  DOP is sensitive to cutoff angle.  The 95% HDOP increases 
by about 50% when the cutoff angle increases from 5° to 15°.  The effect is somewhat 
greater for VDOP.  DOP is a local property, depending upon the antenna site and horizon 
visibility. 
 
 A new measure, Error Scale Factor (ESF), is defined which scales systematic 
error sources and which is analogous to DOP.  Due to the differing elevation angle 
mapping functions, ESF is further categorized into ionosphere and troposphere forms.  
ESF has distinctly different behaviors than DOP.  The 95% percentiles for ionosphere 
HESF and VESF are 0.162 and 2.40, respectively.  The troposphere ESFs are 1.80 and 
8.58.  The marked sensitivity of vertical error to systematic pseudorange error is due to 
the solution of the unknown receiver clock bias parameter in the point positioning 
problem.  Less systematic error will map into positional error if one increases cutoff 
angle.  This behavior is the reverse of DOP, and allows the formulation of an 
optimization problem. 
 
 Systematic error is not completely removed by existing atmosphere models.  Both 
residual ionosphere error and residual troposphere error are systematic when inspecting 
their effects on pseudoranges at a single epoch, and the associated transfer of bias into the 
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receiver clock parameter.  A Monte Carlo simulation shows 50% RMS residual 
ionosphere error for July 20, 2007 maps into 95% percentiles of 0.53 m of horizontal and 
3.69 m of vertical error.  A related Monte Carlo simulation demonstrates that 4.9 cm 
RMS residual troposphere error maps into 95% percentiles of 0.10 m of horizontal and 
0.60 m of vertical error.  A hybrid error model is constructed which relates measured 
PAN statistics to a consistent set of error budget coefficients.  This hybrid error model is 
partially successful in quantifying both random and systematic error sources. 
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APPENDIX 
 
 The focus of this paper has been an exploration of the relationship of DOP to 
recent, measured GPS performance.  However, the temptation to consider alternative, 
hypothetical constellation configurations is irresistible.  In particular, the current (August 
2007) constellation has 30 GPS satellites set healthy.  On the other hand, the PPS-PS (pg. 
19) [1] describes a 24-ball constellation with options for up to 3 additional satellites in 
expandable slots (24+3).  Given the pace of GPS modernization and the longevity of 
current GPS satellites, it is hard to imagine only 24 GPS satellites operating anytime in 
the near future.  In this Appendix we explore the behavior of HDOP and VDOP for a 
hypothetical 24+3 satellite constellation. 
 
 To readily generate the almanac for the hypothetical constellation, the July 20, 
2007 almanac was edited.  PRN 1, 7, and 25 in slots F6, C5, and A5, respectively, were 
set unhealthy.  PRN 26 (slot F2) and 29 (slot F5) were considered to occupy an 
expandable slot.  However, 7° was added to the mean anomaly of PRN 29 and subtracted 
from the mean anomaly of PRN 26 to establish a target separation of 26° in the argument 
of latitude.  The almanac parameters for PRN 16 (slot B1) were copied to PRN 12 (slot 
B5).  Then, 13° was added was added to the mean anomaly of PRN 16 and subtracted 
from the mean anomaly of PRN 12 to establish the target separation.  Similarly, almanac 
parameters for PRN 11 (slot D2) were copied to PRN 24 (slot D6).  Finally, 13° was 
added was added to the mean anomaly of PRN 11 and subtracted from the mean anomaly 
of PRN 24 to establish the target separation of the expandable slot. 
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 DOPs were computed for 2880 30-second epochs through July 20, 2007 on a 
regular 3’x3’ grid over 24°-53°N, 230°-294°E (581 rows, 1281 columns).  The resulting 
2,143,471,680 HDOPs (and VDOPs) are histogrammed with a bin width of 0.01 in 
Figure A-1.  Tabulations of various percentiles, computed from the bin counts, are 
displayed in Table A-1. 
 
  Table A-1 – Hypothetical 24+3 Constellation, 5° Cutoff 
   Percentile HDOP  VDOP 

 90%    1.18    1.89 
 95%    1.30    2.10 

   99%    1.54    2.43 
   99.9%    1.97    2.98 
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Fig. A-1 – HDOP and VDOP, Hypothetical 24+3 Constellation, 5° Cutoff 
 
 It is notable that there is little difference from these results, and the DOP statistics 
displayed in Figure 3 and Table 2.  Only a slight inflation is seen in the 24+3 
constellation DOPs compared to the 30-ball DOPs.  This is in contrast to the marked 
increase in DOP due to increase in cutoff angle shown earlier in this paper. 
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